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Abstract—One of the most interesting paradigms of chaos
control is the possibility of switching a system between different
unstable periodic orbits (UPOs) with effectively zero control
energy. We give a robust method to find finite-time optimal
transient trajectories, and show how to stabilize both, UPOs
and transients, within the same LQ-framework. The method is
quite general, and can also be used to drive a system from static
stationary points to an UPO. To illustrate our approach we apply
it to the controlled logistic map, and also to an experimental
driven-pendulum setup.

Index Terms—Chaos Control, nonlinear optimal control, tar-
geting, time-dependent LQ, discrete Hamiltonian, driven pendu-
lum.

I. INTRODUCTION

In recent years much progress has been made in controlling

nonlinear and especially chaotic systems, and a variety of

algorithms have been developed to find and stabilize periodic

solutions in chaotic systems [1]. Indeed, two of the most

important paradigms in chaos control are stabilizing unstable

periodic orbits (UPOs) embedded in an attractor and steering

the system between different UPOs. The latter is of special

interest, since it is well known [2], that any strange attractor

has countable infinite UPOs embedded. If the UPOs are

contained in the same attractor (i.e. the same invariant set of

the dynamic ow), the energy needed to switch the system

between these UPOs vanishes exponentially with the time N
allowed for the transient trajectory.

In this paper we give a time-discrete algorithm, which yields

for any given finite number of time steps N an optimal control

signal u(k) which switches the system between different

UPOs. The method is universal and can e.g. also be used

to find minimal-energy trajectories connecting static states

outside an attractor with an UPO embedded in. This kind

of transients are obviously a necessity in any practical or

experimental setup. We can also connect UPOs embedded in

different attractors, and find our way back to static stationary

points. Since the method does not relay on chaos, also optimal

trajectories for non-chaotic systems can be found.

Once a transient to a desired UPO has been found, the latter,

and in most cases also the transient itself, need to be stabilized.

To this end we apply a time-dependent LQ- (linear-quadratic)

approach which will briey be outlined in Section III.

Finally, we apply our method to a periodically driven non-

linear pendulum experiment. Short video sequences, demon-

strating the practicability of the method in an experimental

setup, can be watched at [3].

II. OPTIMAL TRAJECTORIES

A. Problem Definition

In most modern applications control algorithms will be

implemented in a digital, time-discrete fashion. Thus we

assume that we can describe our physical system with a set

of (nonlinear) difference equations. The goal is to find control

signals and transient trajectories between two states in a finite

time N , which leads to a system of difference equations with

boundary conditions. The problem can thus be stated as:

x(k + 1) = f(x(k),u(k), k), k = 0, 1, . . . N − 1 (1)

x(0) = a,

x(N) = b.

Here x(k) ∈ Rn is a n−dimensional state vector, u(k) ∈
R
m is the external control vector, and k is the (discrete) time

index. The vector function f is a mapping of Rn × Rm ×
R → R

n. As stated, we seek an optimal control sequence

u(k), k = 0, 1, . . . N − 1, in the sense that the following

weighted energy functional

J =
1

2

N−1∑

k=0

(
u(k)T ,x(k)T

)( S R

RT T

)(
u(k)
x(k)

)
(2)

is minimized. Here S, T and R are weighting matrices, T

and S are supposed to be symmetric. Furthermore, S must

be positive definite (thus non-singular) and T − RTS−1R

positive semi-definite. In a first approach, one might choose

S = 1m×m, and R = T = 0. In this case, only the

external control signal u(k) is used for the optimality criterion

(minimal total drive energy). Note, that in special cases it could

be even useful to allow for time- dependence in the above

weighting matrices.

B. Hamiltonian Approach

As in the time-continuous case (see e.g. [4]) we start

defining the Lagrangian functional

L = J +
N−1∑

k=0

pT (k) · {f(x(k),u(k), k)− x(k + 1)}, (3)



where the components of p(k) are Lagrange-multipliers.

The next step is to perform a Legendre-transform by defining

the Hamiltonian function. In this context p(k) is considered

as new, independent system state vector, and is referred to as

conjugate variable or (generalized) impulse.

The Hamiltonian function is then defined by

H(x(k),p(k),u(k), k) ≡ H(k) = J+pT (k)·f(x(k),u(k), k),
(4)

thus we have

L =
N−1∑

k=0

H(x(k),p(k),u(k), k)− pT (k) · x(k + 1). (5)

Necessary conditions for an optimal trajectory are

∂L

∂x(k)
=

∂H(k)

∂x(k)
− p(k − 1) = 0 (6a)

∂L

∂p(k)
=

∂H(k)

∂p(k)
− x(k + 1) = 0 (6b)

∂L

∂u(k)
=

∂H(k)

∂u(k)
= 0. (6c)

Since S is invertible, u(k) can readily be calculated from

(6c) to yield

u(k) = −S−1pT (k) ·
∂f(x(k),u(k), k)

∂u(k)
− S−1Rx(k). (7)

If the system is linear in the external control u(k), the right

hand side does not depend on u(k) any more. In all other

cases (7) can either be solved analytically or numerically. For

the relaxation method described below, implicit differentiation

can be applied to yield the Jacobians Jf (k) =
∂f(x(k),u(k),k)

∂u(k) ,

thus avoiding the problem for explicitly solving (7) for u(k).
The result can be used in (6a) and (6b) to form the canonical

2n-dimensional system

p(k − 1) = f1(x(k),p(k), k), k = 1, 2, . . . N (8)

x(k + 1) = f2(x(k),p(k), k), k = 0, 1, . . . N − 1

x(0) = a,

x(N) = b.

Here the functions f1 and f2 are maps from R
2n×R→ R

n

and are given as

f1(x(k),p(k), k) =
∂H

∂x(k)
= (9)

∂

∂x(k)
pT (k) · f(x(k),u(k), k)

∣∣
u=−S−1pT · ∂f

∂u
−S−1Rx

,

f2(x(k),p(k), k) = f(x(k),u(k), k)|u=−S−1pT · ∂f
∂u
−S−1Rx .

In (8) we have in total 2nN equations and also

2nN unknowns: n · (N − 1) for the state trajectory

(x(1),x(2), . . .x(N − 1)) and n(N + 1) unknown impulses

(p(0),p(1), . . .p(N)). Note that this formulation of the

canonical Hamiltonian equations (8) comprise one iteration

forward and one backward in time.

C. Solution methods

1) Shooting: If in (8) f1 is invertible in the variable p(k),
we can define a totally forward directed difference equation

system. To this end we define p ′(k+1) = p(k) and solve f1
for p ′(k + 1) :

z(k + 1) ≡

(
p ′(k + 1)

x(k + 1)

)
= (10)

(
F1(x(k),p

′(k), k)

F2(x(k),p ′(k), k)

)
= F(z(k), k). (11)

Thus we end up with an iteration of a 2n-dimensional

system z(k + 1) = F(z(k), k). To find a solution which

fits the boundary conditions x(0) = a, and x(N) = b,

we use the start vector z0 = z(0) =
(
p ′

0

a

)
, where p ′0 is

an unknown variable. After N−fold iteration F(N)(z0) :=

F(F(F(· . . .z(0), N−2), N−1), N) =
(
p ′

N

x(N)

)
we can read off

the final state x(N). Thus the remaining problem is finding

roots of the nonlinear equation in the unknown p′0

(
0 1

)
· F(N)

(
p ′0
a

)
− b = 0. (12)

For higher dimensional nonlinear systems however, solving

this equation can become numerically very sensitive. After

several iterations (N large), the function F(N) can become

extremely complicated and we encounter a high sensitivity to

initial conditions p′0. This effect is well known for chaotic

systems indeed.

As an aside, it is worth noting that the ux of (10)

is symplectic. This means, that the Jacobian JF (k) =(
∂F1
∂p ′(k)

∂F1
∂x(k)

∂F2
∂p ′(k)

∂F2
∂x(k)

)

has for all k the property

JTF I JF = I, (13)

where I is the following 2n× 2n matrix I =

(
0 1

−1 0

)
.

Note that I2 = −1n×n. Equation (13) implies for example,

that det(JF ) = 1 for all k, thus it is always invertible. In fact,

solving symplectic ux equations is well investigated [5].

2) Relaxation Method: A much more robust method for

solving (8) is the following relaxation-based method. It is espe-

cially suitable for finding optimal transients in chaotic systems,

where the above-mentioned sensitivity to initial conditions are

encountered. In fact, we can extend the so called "targeting

method" [6], allowing state transients with minimal energy

(in fact, the energy will exponentially vanish with transient

time) of the control signal within a given finite transient time

N.
We start out with linearizing (8) around a supposedly known

start-trajectory:

p(k − 1) + η(k − 1) = f1(k) +J11(k)ξ(k) + J12(k)η(k),

k = 1, 2, . . . N and (14)

x(k + 1) + ξ(k + 1) = f2(k) +J21(k)ξ(k) + J22(k)η(k),

k = 0, 1, 2, . . . N − 1, (15)



where the Jacobians are given here as

J11(k) =
∂f1

∂x(k)
, J12(k) =

∂f1
∂p(k)

, (16)

J21(k) =
∂f2

∂x(k)
, J22(k) =

∂f2
∂p(k)

.

Note, that with the indices chosen here, we have the desir-

able feature that the Jacobian is symmetric, i.e. JT (k) = J(k).
The set of equations for the unknowns η(k) and ξ(k) can be

casted in matrix form as follows: For k = 1, 2, 3, . . . N − 1
we have

(
−1 J11(k) J12(k) 0

0 JT12(k) J22(k) −1

)





η(k − 1)
ξ(k)
η(k)

ξ(k + 1)




 =

(
p(k − 1)− f1(k)
x(k + 1)− f2(k)

)
.

At the boundaries k = 0 and k = N we have

(
−1 0 0

JT12(0) J22(0) −1

)


ξ(0)
η(0)
ξ(1)



 =

(
x(0)− a

x(1)− f2(0)

)
and (17)

(
−1 J11(N) J12(N)
0 −1 0

)


η(N − 1)
ξ(N)
η(N)



 =

(
p(N − 1)− f1(N)

x(N)− b

)
(18)

respectively. Stacking the matrices above for k = 0, 1, . . . N
into an almost block-diagonal matrix Z, the vector of un-

knowns to a vector ζ and the right hand vector (error vector)

to e, we end up with a matrix equation of the form

Z ζ = e. (19)

Equation (8) is then solved by the following algorithm:

1) "Guess" some initial trajectory x(0)(k),p(0)(k). In most

cases a very crude guess will be sufficient.

2) Calculate the Jacobians according to (16) and form the

matrix Z(0). Calculate the r.h.s error vector e(0).
3) Solve the linear equation Z(0)ζ(0) = e(0). Due to

symmetry and the diagonal-dominated structure of Z

this is in general no problem and can be done using

standard linear algebra packages.

4) Calculate the relative residual error

ε(0) =
∥∥∥ζ(0)

∥∥∥
2

(∥∥∥x(0)(k)
∥∥∥
2
+
∥∥∥p(0)(k)

∥∥∥
2

)−1
. (20)

5) If the residual error is smaller than a given limit (e.g.

10 times machine precision), end the algorithm.

Else, calculate the update parameter γ according to

γ =

{
α ε(0) > β
1 ε(0) ≤ β

. (21)

For practical implementation the values α = 0.4 and

β = 0.05 have proved good performance.

6) Update the state- and impulse vectors according to

x(1)(k) = x(0)(k) + γξ(0), (22)

p(1)(k) = p(0)(k) + γη(0).

Then continue the iteration with step 2), using these

updated vectors.

This algorithm shows very robust behavior, even in compli-

cated situations and for large N. Reducing the update gradient

to a factor of α in (21, 22) if the error is large, avoids

updating into the wrong direction, if the trajectory is still far

away from a converged solution. Of course, the algorithm may

be refined further, e.g. using a continuous behavior of γ(ε).
However, numerical experiments have shown, that this does

not improve convergence dramatically. Similar methods are

used for solving differential boundary value equations, cf. e.g.

[7].

3) Optimal targeting: The true advantage of the relaxation

algorithm emerges in chaos control applications. Here the

initial trajectory can be used from a targeting procedure

(x(0)(k) = xTarget(k) and u(0)(k) ≡ 0). We can choose

p(0)(k) ≡ 0, letting the system do most of the control work

by itself. The latter choice is motivated by (7), since we

are interested in solutions with energy J almost zero (if the

mixing weight R in (2) is small or zero). Small corrections

necessary are then achieved by only very few iterations of

the relaxation algorithm. To find xTarget(k) we iterate (1) with

u(0)(k) ≡ 0 N− times, starting at a slightly displaced initial

state x(0)(k) = a+ εa. The norm function

εb(εa) =
∥∥∥b− f (N)(a+ εa, 0, k)

∥∥∥
2

(23)

measures the difference of x(0)(N) to the desired state

b, and will typically show very sharp notches as function

of εa, see also Fig. 23. Other methods for finding targeting

solutions use random-seed initial states, which are spread in

the vicinity of a [9]. Iterating (1) with such a "notch-solution"

as initial state x(0) = a + εa,notch gives us a good candidate

for xTarget(k). In fact, as shown in the application section,

this extended targeting method yields trajectories with the

property of exponentially decaying energy of the control signal

as function of length N :

N∑

k=0

‖u(k)‖22 ∼ e−N . (24)

III. STABILIZING TRAJECTORIES

Since most trajectories we are interested in are non-stable,

implying (at least one) positive Lyapunov exponent, we need

to stabilize them. This is especially important in the case

of chaos control and targeting, where we want to connect

UPOs embedded in the same attractor. Of course the optimal

transients discussed above are also very close to that strange

attractor, and in fact xTransient(k) converges to the attractor-set

in the limit N →∞.



The method described below relies on the standard LQ

(linear-quadratic) approach [8] and can be seen as a generaliza-

tion of the OGY method [10] well known to the chaos-control

community. The only difference to the standard textbook result

is that we have to deal with a time-variant system here. We

briey outline this method here for completeness. The first step

is linearizing (1) around the desired full trajectories (UPOs

and transients) x0(k) and u0(k), resulting in a time-dependent

linear difference equation:

ξ(k + 1) = A(k)ξ(k) +B(k)η(k). (25)

Here ξ(k) = x(k) − x0(k) ∈ R
nis the n-dimensional

state vector deviation, η(k) = u(k) − u0(k) ∈ R
m is the

external control vector deviation. Note that for UPOs we have

u0(k) ≡ 0. The time-dependent matrices A(k) and B(k) are

the Jacobians of f with respect to x and u.

We define a linear (L) control law

η(k) = −K(k)ξ(k), (26)

where the control coefficients K(k) to stabilize the system

are found by minimizing the quadratic (Q) functional

I =
1

2

∞∑

k=0

ξT (k)Uξ(k) + η(k)Vη(k), (27)

where U and V are positive definite weighting-matrices

of states and control signal, respectively. A solution to this

problem is provided by the Riccati backward iteration

P(k) = U+AT (k)P(k + 1)A(k)− (28)

AT (k)P(k + 1)B(k)
(
V+BT (k)P(k + 1)B(k)

)−1
·

BT (k)P(k + 1)A(k) (29)

K(k) =
(
U+BT (k)P(k + 1)B(k)

)−1
·

BT (k)P(k + 1)A(k).

To compute e.g. the control coefficients for a UPO1-

transient-UPO2 scenario, we create the total trajectory by

concatenating the parts from UPOs and transients. In addition,

UPO2 will be appended several times, to ensure the iteration

converges to a periodic solution. The backward iteration is

then started with P(M) = U, where M is the last index in

the full trajectory described above.

IV. APPLICATIONS

A. Logistic Map

In the following we illustrate our method for a very simple

yet nontrivial example, the controlled logistic map [11]:

x(k + 1) = r x(k)(1− x(k)) + u(k). (30)

States x and control u are scalar signals and 1 < r ≤ 4 is a

model parameter. Generally we have |u(k)| ≪ 1 and care must

be taken that 0 < x(k) < 1 for all times. The logistic map is

well known to exhibit chaotic behavior for r > r∞ ≈ 3.57.
The functional (2) is chosen as

J := Ju(N) =
1

2

N∑

k=0

u(k)2. (31)
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Fig. 1. Transition from a period p = 2 orbit to an (instable) stationary point
with r = 3.7 (chaotic regime). State x(k) (upper) and control signal u(k)
(lower graph). Note that the control signal is to be multiplied by10−7.
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Fig. 2. Transition from a period p = 2 orbit to an (instable) stationary point
in a non-chaotic scenario (r = 3.1). State x(k) (upper) and control signal
u(k) (lower graph). The the control signal is to be multiplied by 10−3 here.

Equation (7) reduces to u(k) = −p(k) and the canonical

equations (8) read here

p(k − 1) = r p(k)(1− 2x(k)) and (32)

x(k + 1) = r x(k)(1− x(k))− p(k).

The symmetric Jacobian (16) is

J(k) =

(
−2rp(k) r(1− 2x(k))

r(1− 2x(k)) −1

)
. (33)

Periodic orbits (UPOs) in the chaotic regime and optimal

transients are easily found using the relaxation method. In

Fig.1 we display a rather long transient (N = 30) from a

period p = 2 UPO to an (instable) stationary state. Since we

are in the chaotic regime here (r = 3.7) the control signal

has a very low amplitude (u≪ x) (scale ∼ 10−7). It is also

remarkable, that the action of the control signal u(k) is not

immediately visible in the state signal x(k). It takes a delay of

about 25 time steps, until a significant impact becomes evident

in the graph.

The same setup has been repeated for the non-chaotic case

with r = 3.1, cf. Fig. 2. The behavior of the control signal

is quite different, and the scale of the control signal u(k) is

much larger (∼ 5 · 10−3) here. Yet the desired target state

x(N) = b ≈ 0.67 is exactly reached within finite time.

In Fig. 3 the r.m.s of the energy Ju(N)
1/2 needed for the

transient control signal in dependence of the transition length

N is displayed on a logarithmic scale. Exponential decay

of control energy as in (24) is clearly seen for the chaotic



scenario r = 3.7. In the non-chaotic case r = 3.1 the control

energy attens out and increasing N does not yield any energy

savings.
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Fig. 3. Norm of control signal vs. transition length N of transient control
signal for the chaotic (r = 3.7) and the non-chaotic regime (r = 3.1).

B. Driven Nonlinear Pendulum

1) System description: Next we consider a rigid pendulum

hanging (with low friction) on a sled, which is driven by

a stepper motor, cf. Fig. 4. Length of the pendulum is

l ≈ 1.2m and sampling period is T0 = 1/(20Hz). Of course,

the steps for the motor are interpolated (factor 213), which

is achieved by an interpolation filter realized with a fix-point

signal processor. The angle φ of the pendulum is measured

by an high-resolution optical sensor, the corresponding signal

φ(kT0) is returned to the signal processor, which in turn can

drive the sled position s(kT0) via the motor.

The time-continuous equation of motion for the system

reads

φ̈+ ρ(φ̇) + ω2p sin(φ) = −ω
2
p cos(φ)

s̈

g
, (34)

where s is the position of the sled (the acceleration s̈
will be used as the proper control signal u) and ωp is the

eigenfrequency of the pendulum for small angles φ. The

function ρ(φ̇) resembles a nonlinear (yet continuous) friction

function, which combines a Stribeck type friction [12] with

a quadratic term in φ̇. The latter simulates air friction and

becomes increasingly important for orbits with fast rotating

pendulum and high-speed transients. For a more complete

description also the air friction induced by the speed of the

sled can be considered, but this is neglected here for simplicity.

Using standard techniques, this continuous equation of motion

can be transformed into a system of difference equations

compatible to (1):

x(k + 1) = f(x1(k), x2(k), x3(k), x4(k), u(k), k) =




c1 sin(πx1) + c2 cos(πx1)(u+ d) + x1 + x2 − ρ(x1)
c1 sin(πx1) + c2 cos(πx1)(u+ d) + x2 − ρ(x1)

u+ x3
x3 + x4




. (35)

The state vector is n = 4-dimensional and the control signal

u is scalar (m = 1). The state variables x(k) are connected to

φ(k) and s(k) by x1(k) = φ(k), x2(k) = φ(k− 1), x3(k) =
v(k) = v(k−1)+u(k−1) where v(k) = s(k)−s(k−1) is the

speed of the sled and x4(k) = s(k) = s(k− 1) + v(k− 1) is

f
l

m

s

0

Sled

Fig. 4. Experimental driven pendulum setup.

its position (we let T0 ≡ 1 to simplify notation). Basically,

the third and fourth component of f doubly integrate the

sled acceleration u(k) to the sled position s(k), which is

the variable being directly accessible by the control output of

the signal processor. With d(k) = d0 sin(2παk) we realize a

periodically driven system with frequency α/T0 and amplitude

d0, rendering the difference equations non-autonomous. The

nonlinear pendulum has only 2 degrees of freedom (φ and

φ̇), which is not sufficient to create chaotic motion. With the

external (periodic) force, however, we obtain a third degree of

freedom. It is well known [13] that 3 degrees of freedom in

non-linear systems suffice to produce chaotic motion. The pa-

rameters c1, c2 and also the parameters describing the friction

function ρ are fitted by experimental measurements.

2) Periodic orbits: Calculation of (8) from (35) and apply-

ing the relaxation method for state transitions is straightfor-

ward. We can create all kinds of optimal transients, e.g. to

drive the pendulum into a static inverse state (d0 ≡ 0, φ =
π, φ̇ = 0) starting from the stable state (φ = 0, φ̇ = 0).
It is more interesting, however, to drive the system into the

chaotic regime, which becomes manifest for a wide range of

frequencies α and amplitudes d0. In this case the ux of the

motion is part of a strange attractor, which hosts an abundant

number of (unstable) periodic orbits. These orbits, having the

property x(N + k) = x(k), can be found by fixing α = 1/N
and searching for the roots of Φ defined by:

Φ(x) = f (N)(x, 0, k)− x = 0 where u(k) ≡ 0 (36)

and f (N)(x) = f(f(f(. . . f(x, 0, k) . . .). Since x is in

general higher dimensional (4-dimensional in this example) an

analytical treatment of (36) is not possible. A practical method

for finding UPOs is based on a monte-carlo method: randomly

select a (physically reasonable) state x0, which is then to

be used as initial trial solution for a standard Gauss-Newton

algorithm. If no convergence appears, randomly select another

x0. To drive the system from the stable state (φ = 0, φ̇ = 0)
into an UPO, simply select a =(0, 0, 0, 0)T as initial state and

use any state on the UPO for b. The transient can then be

found easily using the relaxation method.

3) Optimal Targeting: To connect two UPOs with (almost)

no expense of energy we can proceed as follows: select a

as state on UPO1, b as state on UPO2. Then use (23) to

find a prototype transient (u ≡ 0) between the orbits. Here

we vary the initial state a in the x1−direction only, i.e.
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Fig. 5. Example of function (23) for the periodically driven pendulum. Note
the logarithmic (dB) scale.
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Fig. 6. Comparison between standard targeting method and optimal targeting
for a left/right rotation transition of the pendulum. Angular speed of pendu-
lum (upper), optimal targeting control acceleration u(k) (middle), standard
tageting of the same trajectory (lower). Note the different scales.

x(0) = a + εae1 with e1 the unit vector in x1−direction.

If the UPOs are contained in the same attractor, εb will show

distinct notches. An example of this function for a left/right

alteration in rotation of the pendulum is shown in Fig. 5.

As described before, min{εb} will yield a starting trajectory

x(0)(k) = xTarget(k), u
(0)(k) ≡ 0 for the relaxation algorithm.

Few iterations lead here to an optimized finite-time orbit-

connecting control signal u(k).

We give an example for an (almost) energy-free left/right

rotation alteration. The additional acceleration u(k), needed

using the standard targeting approach, is compared to our

optimal targeting method (Fig. 6). Clearly, standard targeting

works with two "wing beats of the buttery", the first is needed

to leave UPO1, the second to lock into the new UPO2. In

between u is exactly zero. In contrast, the energy of our op-

timal trajectory is distributed over the whole transient, which

minimizes the overall energy needed. In this example we have

an energy gain by a factor Ju(uStandard)/Ju(uOptimal) ≈ 800
for the same length of the transient N = 70.

This left/right rotation switch (among other UPO switches)

of the pendulum can be watched on [3]. The additional

acceleration u(k) needed to perform the change in rotation

is so small, that it can not be observed by eye. In the video

initial and finite UPOs are illuminated by green or blue LEDs,

whereas during the transient phase red LEDs are activated.

The sled is continuously and periodically driven with fixed

frequency α and amplitude d(k).

V. CONCLUSION

Based on quadratic optimality criteria we discussed a

method, to actuate any time-discrete system dynamics into a

defined state within a finite time. When applied to nonlinear

systems containing one ore more chaotic attractors, we can

find optimal “almost zero” control signals, which connect

different periodic orbits contained in the same attractor. In

our application to the chaotic pendulum we could gain a

factor of about 800 in energy saving compared to the standard

targeting procedure given the same transient time. Moreover,

optimal transients can be found also outside the attractor. This

allows for connecting non-chaotic to chaotic regimes, and of

course any other transition, e.g. between static points. A time

dependent LQ-approach to stabilize UPOs and transients has

also been discussed. Application to an experimental pendulum

setup has been lined out, and many of the UPOs and trajec-

tories can be seen as video clip on [3].

Using the Hamiltonian approach to linear systems yields

very efficient algorithms, which can be implemented under

hard real time conditions. Work to apply this idea to fast laser

scan-heads is currently in progress.
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