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Abstract—Laser scanners basically deflect a laser beam in
2 dimensions by electro-mechanically driven mirrors. Due to
the mechanical nature of galvanometers (so-called galvos) and
mirrors the dynamic is limited. For most applications however,
dynamic enhancement without loss of precision is desirable. To
boost the dynamics, a precise model is indispensable. Further-
more the optical (geometric) mappings need to be considered.
To estimate both, we use a composite mapping algorithm.
As stimulus signals plane filling (fractal) curves proof to be
very useful. Once a reliable dynamic and geometric model is
obtained, we can optically rectify the set-point trajectory and
apply optimality criteria to find the control sequence for a given
contour. This will be demonstrated by a remote ablation cutting
(RAC) application, where constant high speed trajectories are
crucial for good cutting results.

I. INTRODUCTION

Laser scanner systems have a broad range of applica-
tions, including laser eye surgery (LASIK), inscription on
various surfaces, laser cutting and welding. Common to all
applications is the need of high precision and high speed.
Higher speed obviously reduces the production time and
thus increases productivity. For the relatively new method of
laser cutting, so-called Remote Ablation Cutting (RAC), a
(constant) high speed along the cutting contour is even crucial.
If speed is too low, the percentage of liquid melt produced is
too high (as compared to the vapor portion), which results
in a partial re-closure of the kerf. On the other hand, the
electromechanical actuators (in principle two galvanometers)
needed for highly brilliant laser beams with 1-10kW power,
comprise mirrors with up to 50mm in diameter, resulting
in a high moment of inertia. With the common setup of an
analog PID controller for the galvanometer, the dynamics do
not meet the requirements. Due to the high speed needed,
small details of contours can not be resolved to exact size.
Enhancing the dynamics, i.e. increasing the bandwidth of the
system, thus equals to rising the resolution and make smaller
scales accessible.
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Fig. 1. Geometry of measurement setup.

Standard galvanometer laser scanner systems (galvos) com-
prise a magnetic axis, which drives the mirror on one side,
and an angle sensor at the other. The angle sensor is used to
feed the PID controller. At high dynamic operation, however,
vibrational modes of the mirror lead to a discrepancy between
the angle position as measured by the sensor and the true angle
of the mirror [2]. Thus it is necessary to find a model of the
total system, which includes the dynamic transfer functions
from the input voltage of the electric driver to the true mirror
angle.

Furthermore, there is a static geometric mapping function,
which maps the mirror angles from their respective positions
to the 2D-plane. In many cases special optical component
(e.g. F-Theta objectives) are used. They also contribute to
the global static geometric mapping. In addition, the optical
transfer function from the 2D-plane to the camera must be
taken into account. The measuring setup is shown in Fig. 1.
The scan head is driven by a Digital Signal Processor (DSP)
using sample rate f, =48 kHz. The test patterns are projected
onto a screen, which is photographed by a digital camera
aligned to the optical axis.

II. SYSTEM MODELING

System modeling can be done by starting from first prin-
ciples, e.g. solving Maxwell’s equations to find an equivalent
electrical circuit diagram, and perform mechanical FEM cal-
culations [1]. For better reproducibility of results and also due
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(a) Stimulus signal used for system iden-
tification.

(b) Direct output (photo, result from
standard scanner).

(c) Output with pre-equalized input
(photo, same hardware as (b)).

Fig. 2. Triple flow snake curves at different scale resolutions.

to variation in production we prefer here a so-called gray-box
approach. This means that the principal structure (e.g. order
and special poles of the dynamic model) are fixed, the detailed
parameter values however are adapted to measuring results.

A. Stimulus Signal

The choice of the stimulus signal is crucial in system
recognition applications. First, broad frequency spectrum is
required. Since in our case the system output is a static 2D-
figure, we need in addition periodicity and a large number
of discriminable measuring dots. Furthermore, approximate
homogeneous filling of the 2D-plane is of advantage for
estimation of the geometric distortions.

1) Plane filling periodic curves: Plane filling curves are
known since their discovery by Giuseppe Piano in 1890, [3].
Since we have the additional constraint of periodicity, only few
classical curves are suitable here. For example, three Gosper
curves [4], can be arranged to form a periodic, 3-symmetric
curve. This so-called triple flow snake is shown in Fig. 2a at
construction level 3, comprising 3 * 73 = 1029 sample points.
At a sample rate of 48 kHz this results in a repetition period
of about 21.4 ms. We propose to use the triple flow snake as
stimulus (3FS) for several reasons:

e The 3FS has very good spectral behavior, with relatively
slow decay for higher frequencies. Due to symmetry,
only every 3rd spectral line vanishes.

e As for any plane filling curve, we achieve highest yield
of measuring points (and thus best SNR) in the 2D-
plane.

e 3FS has good autocorrelation properties with a unique
maximum.

The self-similar structure also allows for direct measurement
of scale resolution, and thus offers a quantitative means for
assessing dynamic-enhancements due to e.g. improved control
algorithms. Applying the 3FS stimulus of Fig. 2a to our laser
scanner system, the curve displayed in Fig. 2b is observed.
Clearly, the scanner can not resolve the 3FS curve with the
input resolution (level 3), rather a 3FS curve of construction
level 2 is produced.

Fig. 3. Retrieving digital signal samples from photographed laser pulses (red
dots). Green circles: Detected sample positions. Yellow: Detected contour.

2) Acquiring the output signal from photo: By pulsing
the laser with the sample frequency of fy =48kHz, we can
retrieve the output signal using standard image processing
techniques, like the circular Hough transform [5]. A detail of
the pulsed curve is displayed in Fig. 3, together with detected
sample dots and trajectory. Due to good auto correlative
properties of the stimulus signal, the phase (and thus the
starting point) of the signal can then be found easily.

B. The Composite Mapping Algorithm

To identify the optical mapping G consistently with the
dynamic model M, we apply an iterative algorithm. Let
the input samples for the 2D-space be denoted by a matrix
X = (x1,x2), where x; € R™ are n-dimensional stimulus
vectors for each dimension. Similarly, the matrix Y = (y1,y2)
represents the sample points extracted from the photo. The
dynamic model M, depending on the parameter vector a, is
then considered a mapping

Ma . Rnx2 — RnXQ, Ma(X) —Y. (1)

The parameters a are constrained to ensure a gain factor of 1
for each dimension of this model. In the same way, the optical
distortion function is a map

ggl . RnX2 N RnXZ’ gl:l(Y) _ Y’. (2)

Typically, second order polynomial functions suffice to model
the optical behavior. The algorithm, a variant of a composite
mapping algorithm [7], starts then with
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Fig. 4. Example for re-simulated signal (red) in comparison to measured
signal (blue). Green: Optical distortion not considered.

(1) Find a® which minimizes

a® = argmin [| Ma(X) = Y p, 3)

where Y =Y and || - || represents the Frobenius
norm. Next we re-simulate the output signal from this
first guess of parameter set a(®) : Y (1) = M o) (X).
(2) The following step consists of finding optimal geometric
rectification parameters b(®), such that
b® = argmin [|G,0) () Y|l @
is minimized. Again, using b(®), we rectify the geometry
by Y =gl V().
(3) Now we can iterate step (1) with y(©) replaced by Y@,

Typically, convergence is achieved after 5 to 10 times
repeating steps (1) and (2), and we end with a model
M) (X)), representing the dynamics, and g;}w) (X), cor-
responding to the total geometric distortions, including the
optical transfer function of the camera. To get the rectification
map R ! needed for latter pre-distortion, we seek the static
optical transformation 7 from the projection screen to the
camera. This can be done using standard registration tech-
niques [6]. Thus we have G = 7 o R, from which R~ can
be calculated.

Since all signals are time-periodic, there is no need to
consider initial states in the dynamic model M, and the
minimization in step (1) is efficiently done in Fourier space,
using FFT. Since we choose unity gain for the dynamic model,
the mappings G and M are independent. This implies, that
none of the parameters in a can compensate for geometric
distortions and b can not mimic any dynamic behavior. It is
thus guaranteed, that the algorithm converges to a unique solu-
tion. Since already the first estimation step leads to a dynamic
model with more than 90% accuracy, only local convergence
of the algorithm is required. As the stimulus signal is a plane
filling curve, geometric distortions are weighted uniformly in
2D-image space, whereas dynamic weighting is ~ 1/f due to
the self-similarity property of fractals. It is straightforward to
use different spectral weighting too, since the model estimation
technique is performed in frequency space. In Fig. 4 we show
a detail of the re-simulated signal compared to the measured
ones after 4 iterations.
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Fig. 5. Estimated discrete time impulse responses of system (blue: 1 — mirror
axis, green: x2— mirror axis), and responses after dynamic equalization (red).
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Fig. 6. Frequency responses for xi-mirror axis (blue), equalizer transfer
function (black) and response after dynamic equalization (red).

C. Results

1) Geometric Distortion: Staying in the range of small
amplitudes, which is best practice to get locally reliable
results for a linearized dynamic model, higher order optical
distortions are small. Nonetheless, optical correction improves
the estimation of the dynamic model substantially, as can be
seen in Fig. 4.

2) Dynamic Model: In Fig. 5 we show the impulse re-
sponses for the models of two scanner axes.

Obviously, the systems have nonlinear phase (no symmetry
in the impulse response), thus originally symmetric objects
will appear asymmetrical. Responses are different between
x1— mirror and xo— mirror axes, which is another source
of contour distortion. Typical response-time is 10 samples.

D. Model Validation

1) Equalizer Construction: A good way to validate a dy-
namic model, is to construct an equalizer, which pre-distorts
the signal in such a way, that the serial connection of equalizer
and galvo behaves like a symmetric finite impulse response
system. Obviously, the equalizers must have zeros at the pole
positions of the galvo systems in the Z-plane. In addition,
we apply the constraint, that the total responses of both axes
are identical, which leads to a coupled channel optimization
problem. Note, that we do not require the equalizer to act like
the complete inverse of the galvo systems. This would lead to
extremely high amplitudes in the control signal, which are not
realizable in practice. System order of the equalizers as well



as their frequency responses are design parameters, so that the
gain in dynamics can be traded off with control amplitudes.
Mathematical details of optimal equalizer design will be
described elsewhere. Fig. 5 shows the resulting combined
impulse response of equalizers and galvos (red), which are the
same for both axes. Obviously we have a constant group delay
of 8 samples and a typical response time of only 5 samples in
this example. The Frequency responses as displayed in Fig.
6 clearly shows that the effective bandwidth of the system
has been extended to more than 2kHz as compared to about
800kHz. On the other hand, it makes no sense to ~over-
compensate” the galvo system for higher frequencies, which
would lead to non tractable behavior and noise amplification.
As seen, our method leads to regularized equalizers with low
gain in the high frequency region.

2) Assessment of dynamic gain: Here we give a new
method for quantifying the dynamic gain achieved, e.g. by
inclusion of an equalizer into the galvo path. The idea is based
on multi-scale analysis and gives an objective measure by a
scale resolution curve. As an example consider Fig. 2c, which
has been photographed using the same scanner hardware, but
with an equalizer in series to the control signal. With the
same stimulus signal, (Fig. 2a), the triple snow flake curve
could have been resolved to a much finer scale (about one
construction level). For a quantitative assessment, a multi-
scale-analysis of the measured output signals using wavelet
transforms are a natural choice (see e.g. [8]). The Wavelet
coefficients are calculated by

Xa(k) = alk —n)a(k), )

where 14(k) are suitable wavelet functions with scale pa-
rameter d. Due to their self-similarity, the fractal stimulus
signals u(k) have enough signal energy on all scales: E(d) =
Dok |U4(k)|*, where Uy(k) denote the wavelet coefficients of
the stimulus. A meaningful quantity to analyze the resolution
of a scanner system is then the ratio

— ZelXa)P ©

> |Ua(k) |

Values p(d) ~ 1 imply a high accuracy for scale d. Deviations
(p(d) < 1) indicate a loss of precision. In Fig. 7 the blue
curve represents the result for a conventional scan head, the
green and red curves result from pre-distorted control signals
with differently parametrized equalizers. Clearly, at a level of
p = 0.95, an improvement of about one order of magnitude
is possible. The scale (in meters) shown here is referred to a
fixed geometric setup, and can of course be converted to angles
(mrad), if different scanner systems are to be compared.

p(d)

III. APPLICATION: REMOTE ABLATION CUTTING

Remote laser technologies using long focal lengths become
more and more attractive in industry. Remote welding and
cutting are two examples of these processes [9]. One advantage
of remote technology is clearly the possible enhancement in
productivity as compared to conventional laser processes. For
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Fig. 7. Scale behaviour of uncompensated scanner system (blue). Scale
refinement due to equalization (red and green).

remote ablation cutting (RAC) process, a high power laser (1-
10kW) is focused on the workpiece with a very small diameter
of about 50-100 pm at a focal distance of around half a meter.
The resulting beam intensity is sufficient to directly evaporate
steel material. However, to maintain a high percentage of
vapor, the laser spot velocity must be in the range of 5m/s
and above. Thus, highly dynamic scanner systems are enabling
technology for RAC.

A. Model based Optimal Trajectories

With a valid dynamic model at hand, it is straightforward
to construct optimal control signals to get the desired contour.
We start out with a model in discrete state space form,

x(k+1) = Ax(k) + Bu(k)
y(k) = Ox(k) + Du(k),

(7a)
(7b)

where x(k) denotes the n dimensional state vector of the
system at sample instance k. In the following, we discuss
solutions for the period-N case (N > n), since this is what
we need for the RAC application. Let

u(0)
and Qy = [AN"'B ... A2B AB B]

u(N-1)
®)
be the input control sequence and the (extended) control matrix
respectively. State evolution then reads

x(N) = ANx(0) + Qyu = x(0), )

where the second equation is due to periodicity. This leads
immediately to the initial state x(0) = — (AN — 1 )71 Qn,
provided the system has no eigenvalue at z = 1. The system
output vector y for IV samples can be written as

y = Yox(0) + Yiu, (10)



339

38,39

(a) Set-point contour (sizes in mm).
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(b) Result with standard method, T, = 230m:s.

(c) Cutting result with model based optimal pre-
distortion, 7. = 99ms.

Fig. 8. Results of RAC using an industry-contour on a 0.2mm steel sheet.

where the matrices Yy and Y; are given by

C
A CB D O
Yy = LY = CAB CB D
CAN-1 : : : .
CAN-2p ... ... ... D

Y
and y is defined in analogy to u in (8). With (9) and (10),
the control signal u can be readily obtained for any given
output signal y = ys. However, in practice, the set-point signal
Ys, as constructed e.g. by a CAD program, contains (mostly
unintentionally) high frequency components. This leads to
extremely high amplitudes in the control signal u, making it
obsolete for practical usage. Instead, we allow for a deviation
error e between the set-point signal y,; and the resulting output
y:

ys=y+e=Yyx(0)+Yiu+te. (12)

Furthermore, the system model is augmented by an additional
output v(k), whose energy is to be minimized. As example,
we could take v(k) to be the (discrete) 2™ derivative of u(k).
In analogy to (10) we find

v = Vpx(0) + Viu, (13)
and we are ready to formulate a functional
Li=vv+aeTe+ [x(0)T(AYN =T +u"Q] A (14)

Here « is a weighting parameter, controlling the allowed de-
viation of y from its set-point, and A is a Lagrange multiplier.
In fact, the term in square brackets ensures the boundary
conditions in (9). Minimizing the functional (14) with respect

to u”,x(0)T and AT, leads to the following linear system of
equations:

VirVi +aY'YT VTV + oYY QT u
VoVi+aY) vy ViV +aY] Yy (AN — D)7 | | x(0)
Q AN — T 0 A
Y1Tys
=« YOTyS (15)
0

Solving this (symmetric) set of equations using standard
techniques, leads to the desired control signal u and the initial
state x(0) .

B. Model based Optimal Transients

If the object we want to cut is not simply connected,
transients are required, where the laser beam is switched
off. Our goal is here to find a N-point control sequence
u, connecting the given states x(0) and x(V). Again, we
augment the model with an output v(k), and with (9) and
(13) we can set up an energy functional

Ly=v'v— [x(O)TANT +u' Q) — X(N)T] A (16)

Inserting (13) and minimization with respect to u' again
yields a linear system of equations,

-Vi'vi Q7 (u B V" Vox(0)
< Q 0 ) (A) B <x(N) ANX(O)> (D

which can be readily solved for the desired control signal
vector u.
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Fig. 9. Comparison of cumulative contour error: Standard method (red),
enhanced dynamics (blue).

C. Results

We want to cut the contour shown in Fig. 8a from a 0.2 mm
steel sheet. This contour is from an industrial application,
drawn with a CAD tool. Essentially all curves are polygons,
leading to the high frequency problem discussed above. A
1kW laser together with a 35mm aperture scanner system
has been used. Clearly, this contour is non-simply connected,
and contains lots of small-scale details. Applying the current
industry-standard algorithm results in Fig. 8b. Cutting period
for the whole contour was T, =230 ms, lower speed (meaning
higher 7,.) leads to the re-welding. This effect has already
partly occurred in the lower left “eye” of the contour. Small
scale details are obviously slurred, and amplitudes of the
”sine-waves” are too low. In contrast, cf. Fig. 8c, applying
the methods discussed in this paper, we achieve a contour
which is true to size also at smaller scales, while applying
more than twice the cutting speed: 7, =99 ms. This leads to
a true cutting speed above 4 m/s and there is no danger of re-
welding. For a more quantitative investigation, we show in Fig.
9 the cumulative relative frequency of the contour error. The
blue curve indicates, that with our method the contour error
is less than 100 pum for 97% of all measurements (blue), as
compared to 400 um at the same level for the standard method
(red). Alternatively, the root mean square contour error can be
evaluated. We find e,.,,,s =200 pum for the standard contour, to
be compared to €,,,s =50 um for the dynamically enhanced
curve.

IV. CONCLUSION

We presented a novel method for estimating dynamic and
geometric models for laser scanners within an unified frame-
work, based on a composite mapping algorithm. As stimulus
signals for gray-box modeling fractal, plane filling curves
proved very useful. While geometric distortions can be easily
rectified by a static mapping, increasing the dynamic (and
thus making small scales at high speed accessible) is more
involved. We outlined methods for optimally creating control
sequences for prescribed periodic contours, and for connecting
them by transients. In a remote ablation cutting application,
using industrial set-point curves, we showed the successful
operation of the methods presented.
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